Curriculum
- 4 Sections
- 132 Lessons
- 365 Days
- 1. Numbers32
- 1.11.1.1 Types of numbers
- 1.21.1.3 Mathematical Operations
- 1.31.1.4 Number Operations
- 1.41.1.5 Prime Factor Decomposition
- 1.51.2.1 Set Notation
- 1.61.2.2 Venn Diagrams
- 1.71.3.1 Powers/Indices and roots
- 1.81.3.2 Standard Form
- 1.91.3.3 Working with standard form
- 1.101.4.1 Fractions
- 1.111.4.2 Working with Fractions
- 1.121.4.3 Decimals
- 1.131.5.1 Percentage
- 1.141.5.2 Working with Percentage
- 1.151.6.1 Conversions
- 1.161.6.2 Ordering
- 1.171.7.1 Ratios
- 1.181.7.2 Working with Ratios
- 1.191.8.1 Proportion
- 1.201.9.1 Rounding
- 1.211.9.2 Estimation
- 1.221.9.3 Bounds
- 1.231.10.1 Using a Calculator
- 1.241.11.1 Time
- 1.251.11.2 Currency
- 1.261.11.3 Currency Conversion
- 1.271.12.1 Simple Interest
- 1.281.12.2 Compound interest
- 1.291.12.3 Depreciation
- 1.301.13.1 Exponential growth
- 1.311.13.2 Exponential decay
- 1.321.14.1 Compound measures
- 2. Algebra and Graphs39
- 2.12.1.1 Algebra Notation
- 2.22.1.2. Algebra Vocabulary
- 2.32.1.3. Algebra Basic
- 2.42.2.1 Algebraic roots & Indices
- 2.52.3.1 Expanding brackets
- 2.62.3.2 Factorisation
- 2.72.3.3 Quadratic expressions
- 2.82.3.4 Difference of two squares
- 2.92.4.1 Linear Equations
- 2.102.4.2 Linear Inequalities
- 2.112.5.1 Quadratic Equations
- 2.122.6.1 Rearranging formula
- 2.132.7.1 System of Linear Simultaneous Equations
- 2.142.7.2 System of quadratic simultaneous equations
- 2.152.8.1 Algebraic fractions
- 2.162.8.2 Working with algebraic fractions
- 2.172.8.3 Solving algebraic fractions
- 2.182.9.1 Forming equations
- 2.192.9.2 Equations & Problem solving
- 2.202.10.1 Introduction to functions
- 2.212.10.2 Composite & Inverse functions
- 2.222.11.1 Sequences
- 2.232.11.2 nth term
- 2.242.12.1 Midpoint of a line
- 2.252.12.2 Gradient of a line
- 2.262.12.3 Length of a line
- 2.272.13.1 Linear Graph
- 2.282.13.2 Quadratic Graphs
- 2.292.14.1 Types of Graphs
- 2.302.14.2 Drawing a graph without using a calculator
- 2.312.14.3 Drawing a graph with a calculator
- 2.322.14.4 Using a graph
- 2.332.14.5 Tangents
- 2.352.15.1 Drawing a Graph
- 2.362.15.2 Interpreting graphical inequalities
- 2.372.16.1 Distance-Time Graph
- 2.382.16.2 Speed-Time Graph
- 2.392.17.1 Differentiation
- 2.402.17.2 Applications
- 3. Geometry36
- 3.03.1.1 Symmetry
- 3.13.1.2 2D Shapes
- 3.23.1.3 3D shapes
- 3.33.1.4 Unit conversions
- 3.43.2.1 Basic angle Properties
- 3.53.2.2 Angle properties with triangle
- 3.63.2.3 Angle properties with quadrilateral
- 3.73.2.4 Angles in polygon
- 3.83.3.1 Bearings
- 3.93.3.2 Scale
- 3.103.3.3 Constructing SSS triangle
- 3.113.4.1 Angles at center & Semicircles
- 3.123.5.1 Perimeter
- 3.133.5.2 Area
- 3.143.5.3 Problems Solving with Areas
- 3.153.6.1 Arc
- 3.163.6.2 Sector
- 3.173.7.1 Volume
- 3.183.7.2 Surface area
- 3.193.8.1 Congruence
- 3.203.8.2 Similarity
- 3.213.9.1 Pythagoras Theorem
- 3.223.9.2 Right-angled Trigonometry
- 3.233.10.1 Sine Rule
- 3.243.10.2 Cosine Rule
- 3.253.10.3 Area of Triangle
- 3.263.10.4 Applications of Trigonometry
- 3.273.11.1 Pythagoras in 3D
- 3.283.12.1 Drawing trigonometric graph
- 3.293.12.2 Solving trigonometric equations
- 3.303.13.1 Basic Vectors
- 3.313.13.2 Vector problem solving
- 3.323.14.1 Translation
- 3.333.14.2 Rotation
- 3.343.14.3 Reflection
- 3.353.14.4 Scaling
- 4. Probability and Statistics25
- 4.04.1.1 Basic probability
- 4.14.1.2 Relative Frequency
- 4.24.1.3 Expected Frequency
- 4.34.2.1 Two way Tables
- 4.44.2.2 Probability & Venn Diagram
- 4.54.2.3 Tree Diagram
- 4.64.3.1 Conditional probability
- 4.74.3.2 Combined conditional probabilities
- 4.84.4.1 Mean, median & mode
- 4.94.4.2 Averages from Tables and Charts
- 4.104.4.3 Averages from Grouped Data
- 4.114.4.4 Comparing Distributions
- 4.124.5.1 Stem & Leaf diagrams
- 4.134.5.2 Bar chart
- 4.144.5.3 Pictogram
- 4.154.5.4 Pie chart
- 4.164.5.5 Frequency polygon
- 4.174.5.6 Working with Statistical Diagram
- 4.184.6.1 Frequency Density
- 4.194.6.2 Histograms
- 4.204.7.1 Cumulative frequency
- 4.214.7.2 Box-and-whisker Plots
- 4.224.8.1 Correlation
- 4.234.8.2 Scatter Graph
- 4.244.8.3 Line of best Fit
2.10.2 Composite & Inverse functions
A composite function is a function that is applied to the output of another function.
A composite function is denoted by the symbol \( fg(x) \).
- If you enter a number into \( fg(x) \)
- Enter the number into \( g(x) \)
- Input the result of \( g(x) \) into \( f(x) \)
Tip:
Check that you are using the functions in the correct order.
Worked example:
\( f(x)=7-2x \), \( g(x)=\frac{10}{x} \), \( x≠0 \), \( h(x)=27^x \)
Find
- \( f(-3) \)
Substitute \( x=-3 \) into the function \( f(x) \) to find \( f(-3) \)
\( f(-3)=7-2(-3) \)
\( =7+6 \)
\( =13 \)
\( f(-3)=13 \)
- \( hg(30) \)
To work out a composite function, start with the function closest to \( x \).
Start by substituting \( x=30 \) into \( g(x) \).
\( g(30)=\frac{10}{30}=\frac{1}{3} \)
Substitute the result into \( h(x) \) to work out \( hg(30) \)
\( hg(30)=h(\frac{1}{3}) \)
\( =27^{\frac{1}{3}} \)
\( =3 \)
\( hg(30)=3 \)
Inverse Functions:
An inverse function performs the exact opposite of the function from which it was derived.
If the function is denoted by \( f(x) \) then the inverse function is denoted by \( f^{-1}(x).
To find the inverse function
- In the function equation, replace \( f(x) \) with \( y \)
- Replace every \( x \) by a \( y \)
- Solve for \( y \)
- Replace \( y \) by \( f^{-1}(x) \)
Worked example:
Find \( f^{-1}(x) \) when \( f(x)=7x-2 \).
Replace \( f(x) \) with \( y \)
\( y=7x-2 \)
Solve for \( x \)
\( y+2=7x \)
\( x=\frac{y+2}{7} \)
Interchange \( x \) and \( y \)
\( y=\frac{x+2}{7} \)
Replace \( y \) by \( f^{-1}(x) \)
\( f^{-1}(x)=\frac{x+2}{7} \)
\( f^{-1}(x)=\frac{x+2}{7} \)
Test yourself:
Question 1:
\( f(x)=7-2x \), \( g(x)=\frac{10}{x} \), \( x≠0 \), \( h(x)=27^x \)
Simplify, giving your answer as a single fraction.
\( \frac{1}{f(x)}+g(x) \)
[3]
Question 2:
\( g(x)=8x-5 \), \( h(x)=x^2+6 \)
Show that \( hg(x)=19 \) simplifies to \( 16x^2-20x+3=0 \).
[3]
Use the quadratic formula to solve \( 16x^2-20x+3=0 \).
Show all your working and give your answers correct to \( 2 \) decimal places.
[4]
Question 3:
\( f(x)=8-3x \), \( g(x)=\frac{10}{x+1} \), \( x≠-1 \), \( h(x)=2^x \)
Find
- \( hf(\frac{8}{3}) \),
[2]
- \( gh(-2) \),
[2]
- \( g^{-1}(x) \),
[3]
- \( f^{-1}f(5) \).
[1]
Question 4:
\( f(x)=4x-1 \), \( g(x)=x^2 \), \( h(x)=3^{-x} \)
Show that \( g(3x-2)-h(-3) \) can be written as \( 9x^2-12x-23 \).
[2]
Find \( x \) when \( f(61)=h(x) \).
[2]
Question 5:
\( f(x)=7x-2 \), \( g(x)=x^2+1 \), \( h(x)=3^x \)
\( gg(x)=ax^4+bx^2+c \)
- Find the value of \( a \),\( b \) and \( c \).
[3]
- Find \( x \) when \( hf(x)=81 \).
[3]