Curriculum
- 4 Sections
- 132 Lessons
- 365 Days
Expand all sectionsCollapse all sections
- 1. Numbers32
- 1.11.1.1 Types of numbers
- 1.21.1.3 Mathematical Operations
- 1.31.1.4 Number Operations
- 1.41.1.5 Prime Factor Decomposition
- 1.51.2.1 Set Notation
- 1.61.2.2 Venn Diagrams
- 1.71.3.1 Powers/Indices and roots
- 1.81.3.2 Standard Form
- 1.91.3.3 Working with standard form
- 1.101.4.1 Fractions
- 1.111.4.2 Working with Fractions
- 1.121.4.3 Decimals
- 1.131.5.1 Percentage
- 1.141.5.2 Working with Percentage
- 1.151.6.1 Conversions
- 1.161.6.2 Ordering
- 1.171.7.1 Ratios
- 1.181.7.2 Working with Ratios
- 1.191.8.1 Proportion
- 1.201.9.1 Rounding
- 1.211.9.2 Estimation
- 1.221.9.3 Bounds
- 1.231.10.1 Using a Calculator
- 1.241.11.1 Time
- 1.251.11.2 Currency
- 1.261.11.3 Currency Conversion
- 1.271.12.1 Simple Interest
- 1.281.12.2 Compound interest
- 1.291.12.3 Depreciation
- 1.301.13.1 Exponential growth
- 1.311.13.2 Exponential decay
- 1.321.14.1 Compound measures
- 2. Algebra and Graphs39
- 2.12.1.1 Algebra Notation
- 2.22.1.2. Algebra Vocabulary
- 2.32.1.3. Algebra Basic
- 2.42.2.1 Algebraic roots & Indices
- 2.52.3.1 Expanding brackets
- 2.62.3.2 Factorisation
- 2.72.3.3 Quadratic expressions
- 2.82.3.4 Difference of two squares
- 2.92.4.1 Linear Equations
- 2.102.4.2 Linear Inequalities
- 2.112.5.1 Quadratic Equations
- 2.122.6.1 Rearranging formula
- 2.132.7.1 System of Linear Simultaneous Equations
- 2.142.7.2 System of quadratic simultaneous equations
- 2.152.8.1 Algebraic fractions
- 2.162.8.2 Working with algebraic fractions
- 2.172.8.3 Solving algebraic fractions
- 2.182.9.1 Forming equations
- 2.192.9.2 Equations & Problem solving
- 2.202.10.1 Introduction to functions
- 2.212.10.2 Composite & Inverse functions
- 2.222.11.1 Sequences
- 2.232.11.2 nth term
- 2.242.12.1 Midpoint of a line
- 2.252.12.2 Gradient of a line
- 2.262.12.3 Length of a line
- 2.272.13.1 Linear Graph
- 2.282.13.2 Quadratic Graphs
- 2.292.14.1 Types of Graphs
- 2.302.14.2 Drawing a graph without using a calculator
- 2.312.14.3 Drawing a graph with a calculator
- 2.322.14.4 Using a graph
- 2.332.14.5 Tangents
- 2.352.15.1 Drawing a Graph
- 2.362.15.2 Interpreting graphical inequalities
- 2.372.16.1 Distance-Time Graph
- 2.382.16.2 Speed-Time Graph
- 2.392.17.1 Differentiation
- 2.402.17.2 Applications
- 3. Geometry36
- 3.03.1.1 Symmetry
- 3.13.1.2 2D Shapes
- 3.23.1.3 3D shapes
- 3.33.1.4 Unit conversions
- 3.43.2.1 Basic angle Properties
- 3.53.2.2 Angle properties with triangle
- 3.63.2.3 Angle properties with quadrilateral
- 3.73.2.4 Angles in polygon
- 3.83.3.1 Bearings
- 3.93.3.2 Scale
- 3.103.3.3 Constructing SSS triangle
- 3.113.4.1 Angles at center & Semicircles
- 3.123.5.1 Perimeter
- 3.133.5.2 Area
- 3.143.5.3 Problems Solving with Areas
- 3.153.6.1 Arc
- 3.163.6.2 Sector
- 3.173.7.1 Volume
- 3.183.7.2 Surface area
- 3.193.8.1 Congruence
- 3.203.8.2 Similarity
- 3.213.9.1 Pythagoras Theorem
- 3.223.9.2 Right-angled Trigonometry
- 3.233.10.1 Sine Rule
- 3.243.10.2 Cosine Rule
- 3.253.10.3 Area of Triangle
- 3.263.10.4 Applications of Trigonometry
- 3.273.11.1 Pythagoras in 3D
- 3.283.12.1 Drawing trigonometric graph
- 3.293.12.2 Solving trigonometric equations
- 3.303.13.1 Basic Vectors
- 3.313.13.2 Vector problem solving
- 3.323.14.1 Translation
- 3.333.14.2 Rotation
- 3.343.14.3 Reflection
- 3.353.14.4 Scaling
- 4. Probability and Statistics25
- 4.04.1.1 Basic probability
- 4.14.1.2 Relative Frequency
- 4.24.1.3 Expected Frequency
- 4.34.2.1 Two way Tables
- 4.44.2.2 Probability & Venn Diagram
- 4.54.2.3 Tree Diagram
- 4.64.3.1 Conditional probability
- 4.74.3.2 Combined conditional probabilities
- 4.84.4.1 Mean, median & mode
- 4.94.4.2 Averages from Tables and Charts
- 4.104.4.3 Averages from Grouped Data
- 4.114.4.4 Comparing Distributions
- 4.124.5.1 Stem & Leaf diagrams
- 4.134.5.2 Bar chart
- 4.144.5.3 Pictogram
- 4.154.5.4 Pie chart
- 4.164.5.5 Frequency polygon
- 4.174.5.6 Working with Statistical Diagram
- 4.184.6.1 Frequency Density
- 4.194.6.2 Histograms
- 4.204.7.1 Cumulative frequency
- 4.214.7.2 Box-and-whisker Plots
- 4.224.8.1 Correlation
- 4.234.8.2 Scatter Graph
- 4.244.8.3 Line of best Fit
3.3.2 Scale
3.3.2 Scale
3.3.2 Scale
Scale refers to the relationship between the size of an object or distance on a map or drawing and the corresponding size of the object or distance in the real world. In other words, scale is the ratio of the size of the object or distance on the map to the size of the object or distance in real life.- Maps and architectural or engineering drawings are commonly drawn to scale so that they can accurately represent real-world features and dimensions.
- For example, a map may have a scale of \( 1 \) : \( 50000\) meaning that one unit of measurement on the map (such as an inch) represents \( 50000 \) units of measurement in the real world (such as feet or meters).
- Scale is often expressed as a ratio or a fraction, such as \( 1 \) : \( 50000 \) or \( \frac{1}{50000} \) or as a graphic scale, which is a line or bar that shows the relationship between the map or drawing and the real world.
- Using scale is important for accurately representing real-world features and dimensions on maps and drawings, and for making measurements and calculations based on those representations.
Use of scale to convert lengths:
Scale can be used to convert lengths between the map or drawing and the real world. To convert a length on a map or drawing to the corresponding length in the real world, you can use the scale factor or ratio.- For example, if the scale of a map is \( 1 \) : \( 50000 \) and you want to convert a distance of \( 2 \) inches on the map to the real-world distance, you would use the following formula:
- The scale factor in this case is \( 50000 \) so the calculation would be:
- To convert this to a more practical unit of measurement, you could divide by \( 12 \) to get the distance in feet:
- Conversely, to convert a real-world distance to the corresponding distance on a map, you would use the inverse formula:
- For example, if the real-world distance between two points is \( 1 \) mile, or \( 5280 feet \), and the map scale is \( 1 \) : \( 50000 \) the map distance would be:
- Using scale to convert lengths is a useful tool for making measurements and calculations based on maps and drawings, and for accurately representing real-world features and dimensions.