Curriculum
- 4 Sections
- 132 Lessons
- 365 Days
- 1. Numbers32
- 1.11.1.1 Types of numbers
- 1.21.1.3 Mathematical Operations
- 1.31.1.4 Number Operations
- 1.41.1.5 Prime Factor Decomposition
- 1.51.2.1 Set Notation
- 1.61.2.2 Venn Diagrams
- 1.71.3.1 Powers/Indices and roots
- 1.81.3.2 Standard Form
- 1.91.3.3 Working with standard form
- 1.101.4.1 Fractions
- 1.111.4.2 Working with Fractions
- 1.121.4.3 Decimals
- 1.131.5.1 Percentage
- 1.141.5.2 Working with Percentage
- 1.151.6.1 Conversions
- 1.161.6.2 Ordering
- 1.171.7.1 Ratios
- 1.181.7.2 Working with Ratios
- 1.191.8.1 Proportion
- 1.201.9.1 Rounding
- 1.211.9.2 Estimation
- 1.221.9.3 Bounds
- 1.231.10.1 Using a Calculator
- 1.241.11.1 Time
- 1.251.11.2 Currency
- 1.261.11.3 Currency Conversion
- 1.271.12.1 Simple Interest
- 1.281.12.2 Compound interest
- 1.291.12.3 Depreciation
- 1.301.13.1 Exponential growth
- 1.311.13.2 Exponential decay
- 1.321.14.1 Compound measures
- 2. Algebra and Graphs39
- 2.12.1.1 Algebra Notation
- 2.22.1.2. Algebra Vocabulary
- 2.32.1.3. Algebra Basic
- 2.42.2.1 Algebraic roots & Indices
- 2.52.3.1 Expanding brackets
- 2.62.3.2 Factorisation
- 2.72.3.3 Quadratic expressions
- 2.82.3.4 Difference of two squares
- 2.92.4.1 Linear Equations
- 2.102.4.2 Linear Inequalities
- 2.112.5.1 Quadratic Equations
- 2.122.6.1 Rearranging formula
- 2.132.7.1 System of Linear Simultaneous Equations
- 2.142.7.2 System of quadratic simultaneous equations
- 2.152.8.1 Algebraic fractions
- 2.162.8.2 Working with algebraic fractions
- 2.172.8.3 Solving algebraic fractions
- 2.182.9.1 Forming equations
- 2.192.9.2 Equations & Problem solving
- 2.202.10.1 Introduction to functions
- 2.212.10.2 Composite & Inverse functions
- 2.222.11.1 Sequences
- 2.232.11.2 nth term
- 2.242.12.1 Midpoint of a line
- 2.252.12.2 Gradient of a line
- 2.262.12.3 Length of a line
- 2.272.13.1 Linear Graph
- 2.282.13.2 Quadratic Graphs
- 2.292.14.1 Types of Graphs
- 2.302.14.2 Drawing a graph without using a calculator
- 2.312.14.3 Drawing a graph with a calculator
- 2.322.14.4 Using a graph
- 2.332.14.5 Tangents
- 2.352.15.1 Drawing a Graph
- 2.362.15.2 Interpreting graphical inequalities
- 2.372.16.1 Distance-Time Graph
- 2.382.16.2 Speed-Time Graph
- 2.392.17.1 Differentiation
- 2.402.17.2 Applications
- 3. Geometry36
- 3.03.1.1 Symmetry
- 3.13.1.2 2D Shapes
- 3.23.1.3 3D shapes
- 3.33.1.4 Unit conversions
- 3.43.2.1 Basic angle Properties
- 3.53.2.2 Angle properties with triangle
- 3.63.2.3 Angle properties with quadrilateral
- 3.73.2.4 Angles in polygon
- 3.83.3.1 Bearings
- 3.93.3.2 Scale
- 3.103.3.3 Constructing SSS triangle
- 3.113.4.1 Angles at center & Semicircles
- 3.123.5.1 Perimeter
- 3.133.5.2 Area
- 3.143.5.3 Problems Solving with Areas
- 3.153.6.1 Arc
- 3.163.6.2 Sector
- 3.173.7.1 Volume
- 3.183.7.2 Surface area
- 3.193.8.1 Congruence
- 3.203.8.2 Similarity
- 3.213.9.1 Pythagoras Theorem
- 3.223.9.2 Right-angled Trigonometry
- 3.233.10.1 Sine Rule
- 3.243.10.2 Cosine Rule
- 3.253.10.3 Area of Triangle
- 3.263.10.4 Applications of Trigonometry
- 3.273.11.1 Pythagoras in 3D
- 3.283.12.1 Drawing trigonometric graph
- 3.293.12.2 Solving trigonometric equations
- 3.303.13.1 Basic Vectors
- 3.313.13.2 Vector problem solving
- 3.323.14.1 Translation
- 3.333.14.2 Rotation
- 3.343.14.3 Reflection
- 3.353.14.4 Scaling
- 4. Probability and Statistics25
- 4.04.1.1 Basic probability
- 4.14.1.2 Relative Frequency
- 4.24.1.3 Expected Frequency
- 4.34.2.1 Two way Tables
- 4.44.2.2 Probability & Venn Diagram
- 4.54.2.3 Tree Diagram
- 4.64.3.1 Conditional probability
- 4.74.3.2 Combined conditional probabilities
- 4.84.4.1 Mean, median & mode
- 4.94.4.2 Averages from Tables and Charts
- 4.104.4.3 Averages from Grouped Data
- 4.114.4.4 Comparing Distributions
- 4.124.5.1 Stem & Leaf diagrams
- 4.134.5.2 Bar chart
- 4.144.5.3 Pictogram
- 4.154.5.4 Pie chart
- 4.164.5.5 Frequency polygon
- 4.174.5.6 Working with Statistical Diagram
- 4.184.6.1 Frequency Density
- 4.194.6.2 Histograms
- 4.204.7.1 Cumulative frequency
- 4.214.7.2 Box-and-whisker Plots
- 4.224.8.1 Correlation
- 4.234.8.2 Scatter Graph
- 4.244.8.3 Line of best Fit
4.2.1 Two way Tables
A two-way table, also known as a contingency table, is a way of organizing and displaying data that relates to two different categorical variables.
It consists of rows and columns, with each row representing one category of the first variable, and each column representing one category of the second variable.
The cells of the table contain the frequency or count of each combination of the two variables.
For example, let’s say we are conducting a survey on the preferred modes of transportation among people of different age groups. We can create a two-way table to show the results, with one variable being age group (e.g., \( 18 \)-\( 24 \), \( 25 \)-\( 34 \), \( 35 \)-\( 44 \), etc.) and the other variable being mode of transportation (e.g., car, public transportation, bike, etc.).
The resulting table would show the frequency or count of each combination of age group and mode of transportation.
Here is an example of what a two-way table might look like:
This table shows the number of respondents in each age group who prefer each mode of transportation.
For example, we can see that \( 50 \) respondents in the \( 18 \)-\( 24 \) age group prefer to travel by car, while \( 30 \) prefer public transportation and \( 20 \) prefer a bike.
This information can be useful for analyzing and understanding the relationship between the two variables.
To calculate probability from a two-way table
First determine the total number of observations (or sample size) in the table.
Use the formula:
\( P(A \ and \ B)=\frac{Number \ of \ observations \ in \ both \ A \ and \ B}{Total \ number \ of \ observations} \)
where \( P (A \ and \ B) \) represents the probability of both events \( A \) and \( B \) occurring together.
For example, let’s say we have the following two-way table that shows the distribution of students by gender and major:
If we want to calculate the probability of a randomly chosen student being male and majoring in engineering, we can use the formula above:
\( P (Male \ and \ Engineering) =\frac{50}{80+60}=0.45 \)
So, the probability of a randomly chosen student being male and majoring in engineering is \( 0.45 \), or \( 45 \) %.
Similarly, we can calculate the probability of other events by using the formula and the information provided in the two-way table.