Curriculum
- 4 Sections
- 132 Lessons
- 365 Days
- 1. Numbers32
- 1.11.1.1 Types of numbers
- 1.21.1.3 Mathematical Operations
- 1.31.1.4 Number Operations
- 1.41.1.5 Prime Factor Decomposition
- 1.51.2.1 Set Notation
- 1.61.2.2 Venn Diagrams
- 1.71.3.1 Powers/Indices and roots
- 1.81.3.2 Standard Form
- 1.91.3.3 Working with standard form
- 1.101.4.1 Fractions
- 1.111.4.2 Working with Fractions
- 1.121.4.3 Decimals
- 1.131.5.1 Percentage
- 1.141.5.2 Working with Percentage
- 1.151.6.1 Conversions
- 1.161.6.2 Ordering
- 1.171.7.1 Ratios
- 1.181.7.2 Working with Ratios
- 1.191.8.1 Proportion
- 1.201.9.1 Rounding
- 1.211.9.2 Estimation
- 1.221.9.3 Bounds
- 1.231.10.1 Using a Calculator
- 1.241.11.1 Time
- 1.251.11.2 Currency
- 1.261.11.3 Currency Conversion
- 1.271.12.1 Simple Interest
- 1.281.12.2 Compound interest
- 1.291.12.3 Depreciation
- 1.301.13.1 Exponential growth
- 1.311.13.2 Exponential decay
- 1.321.14.1 Compound measures
- 2. Algebra and Graphs39
- 2.12.1.1 Algebra Notation
- 2.22.1.2. Algebra Vocabulary
- 2.32.1.3. Algebra Basic
- 2.42.2.1 Algebraic roots & Indices
- 2.52.3.1 Expanding brackets
- 2.62.3.2 Factorisation
- 2.72.3.3 Quadratic expressions
- 2.82.3.4 Difference of two squares
- 2.92.4.1 Linear Equations
- 2.102.4.2 Linear Inequalities
- 2.112.5.1 Quadratic Equations
- 2.122.6.1 Rearranging formula
- 2.132.7.1 System of Linear Simultaneous Equations
- 2.142.7.2 System of quadratic simultaneous equations
- 2.152.8.1 Algebraic fractions
- 2.162.8.2 Working with algebraic fractions
- 2.172.8.3 Solving algebraic fractions
- 2.182.9.1 Forming equations
- 2.192.9.2 Equations & Problem solving
- 2.202.10.1 Introduction to functions
- 2.212.10.2 Composite & Inverse functions
- 2.222.11.1 Sequences
- 2.232.11.2 nth term
- 2.242.12.1 Midpoint of a line
- 2.252.12.2 Gradient of a line
- 2.262.12.3 Length of a line
- 2.272.13.1 Linear Graph
- 2.282.13.2 Quadratic Graphs
- 2.292.14.1 Types of Graphs
- 2.302.14.2 Drawing a graph without using a calculator
- 2.312.14.3 Drawing a graph with a calculator
- 2.322.14.4 Using a graph
- 2.332.14.5 Tangents
- 2.352.15.1 Drawing a Graph
- 2.362.15.2 Interpreting graphical inequalities
- 2.372.16.1 Distance-Time Graph
- 2.382.16.2 Speed-Time Graph
- 2.392.17.1 Differentiation
- 2.402.17.2 Applications
- 3. Geometry36
- 3.03.1.1 Symmetry
- 3.13.1.2 2D Shapes
- 3.23.1.3 3D shapes
- 3.33.1.4 Unit conversions
- 3.43.2.1 Basic angle Properties
- 3.53.2.2 Angle properties with triangle
- 3.63.2.3 Angle properties with quadrilateral
- 3.73.2.4 Angles in polygon
- 3.83.3.1 Bearings
- 3.93.3.2 Scale
- 3.103.3.3 Constructing SSS triangle
- 3.113.4.1 Angles at center & Semicircles
- 3.123.5.1 Perimeter
- 3.133.5.2 Area
- 3.143.5.3 Problems Solving with Areas
- 3.153.6.1 Arc
- 3.163.6.2 Sector
- 3.173.7.1 Volume
- 3.183.7.2 Surface area
- 3.193.8.1 Congruence
- 3.203.8.2 Similarity
- 3.213.9.1 Pythagoras Theorem
- 3.223.9.2 Right-angled Trigonometry
- 3.233.10.1 Sine Rule
- 3.243.10.2 Cosine Rule
- 3.253.10.3 Area of Triangle
- 3.263.10.4 Applications of Trigonometry
- 3.273.11.1 Pythagoras in 3D
- 3.283.12.1 Drawing trigonometric graph
- 3.293.12.2 Solving trigonometric equations
- 3.303.13.1 Basic Vectors
- 3.313.13.2 Vector problem solving
- 3.323.14.1 Translation
- 3.333.14.2 Rotation
- 3.343.14.3 Reflection
- 3.353.14.4 Scaling
- 4. Probability and Statistics25
- 4.04.1.1 Basic probability
- 4.14.1.2 Relative Frequency
- 4.24.1.3 Expected Frequency
- 4.34.2.1 Two way Tables
- 4.44.2.2 Probability & Venn Diagram
- 4.54.2.3 Tree Diagram
- 4.64.3.1 Conditional probability
- 4.74.3.2 Combined conditional probabilities
- 4.84.4.1 Mean, median & mode
- 4.94.4.2 Averages from Tables and Charts
- 4.104.4.3 Averages from Grouped Data
- 4.114.4.4 Comparing Distributions
- 4.124.5.1 Stem & Leaf diagrams
- 4.134.5.2 Bar chart
- 4.144.5.3 Pictogram
- 4.154.5.4 Pie chart
- 4.164.5.5 Frequency polygon
- 4.174.5.6 Working with Statistical Diagram
- 4.184.6.1 Frequency Density
- 4.194.6.2 Histograms
- 4.204.7.1 Cumulative frequency
- 4.214.7.2 Box-and-whisker Plots
- 4.224.8.1 Correlation
- 4.234.8.2 Scatter Graph
- 4.244.8.3 Line of best Fit
4.4.2 Averages from Tables and Charts
Mean from discrete data:
To find the mean of discrete data given in a table, use the following formula:
\( mean=\frac{sum\ of (value \times frequency)}{sum \ of \ frequencies} \)
Here are the steps to find the mean of discrete data given in a table:
Identify the discrete values and their corresponding frequencies in the table.
Multiply each value by its corresponding frequency to get the product.
Add up all the products to get the sum of \( (value \times frequency) \).
Add up all the frequencies to get the sum of frequencies.
Plug the sum of \( (value \times frequency) \) and the sum of frequencies into the formula and solve for the mean.
Worked Example:
Suppose we have the following table of discrete data
To find the mean of this data set, we can use the formula:
\( mean= \frac{(2×3)+(4×2)+(6×4)+(8×1)+(10×2)}{3+2+4+1+2} \)
\( mean= \frac{6+8+24+8+20}{12} \)
\( mean= \frac{66}{12} \)
\( mean= 5.5 \)
There fore, the mean of the data set is \( 5.5 \).
Median from discrete data:
To find the median of discrete data presented in a table, use the following steps:
Calculate the total number of observations \( n \).
Determine whether \( n \) is odd or even.
If \( n \) is odd, the median is the value in the middle of the ordered data set.
If \( n \) is even, the median is the average of the two middle values.
Worked Example:
Suppose we have the following table of discrete data:
Calculate the total number of observations \( (n) \)
\( n=20 \)
Determine whether n is odd or even
\( n \) is even
Find the two middle values, which are the \( 10 \)th and \( 11 \)th values
\( 6 \) and \( 8 \)
Take the average of the two middle values to find the median
\( Median= \frac{6+8}{2} \)
\( Median=7 \)
Therefore, the median of the data set is \( 7 \).
Mode from discrete data:
To find the mode of discrete data presented in a table, you need to determine which value or values occur most frequently in the data set.
Here are the steps to find the mode from a frequency table
Look for the highest frequency in the table. This is the frequency of the mode(s).
Identify the corresponding value(s) that have the highest frequency.
If there is only one value with the highest frequency, then that value is the mode.
If there are two or more values with the same highest frequency, then the data set has multiple modes.
Worked Example:
Suppose we have the following table of discrete data
To find the mode of this data set, follow these steps:
Look for the highest frequency in the table.
The highest frequency is \( 4 \), which corresponds to the value \( 6 \).
Identify the corresponding value(s) that have the highest frequency.
The value \( 6 \) is the only value with the highest frequency, so it is the mode.
There fore ,the mode of the data set is \( 6 \).